311
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In silico design of novel CDK2 inhibitors through QSAR, ADMET, molecular docking and molecular dynamics simulation studies

ORCID Icon, , , , , , , & show all
Pages 13646-13662 | Received 23 Aug 2022, Accepted 04 Feb 2023, Published online: 19 May 2023
 

Abstract

The present study aims to investigate about the quantitative structure-activity relationship (QSAR) of a series of Thiazole derivatives reported as anticancer agents (hepatocellular carcinoma), using principally the electronic descriptors calculated by the DFT method and by applying the multiple linear regression method. The developed model showed good statistical parameters (R2 = 0.725, R2adj = 0.653, MSE = 0.060, R2test = 0.827, Q2cv = 0.536). The energy EHOMO orbital, electronic energy (TE), shape coefficient (I), number of rotatable bonds (NROT), and index of refraction (n) were revealed to be the main descriptors influencing the anti-cancer activity. Further, new Thiazole derivatives have been designed and their activities and pharmacokinetic properties have been predicted using the validated QSAR model. The designed molecules were then assessed to molecular docking (MD), and molecular dynamic (MDs) simulation accompanied by the calculation of the binding affinity using MMPBSA script according to 100 ns a simulation trajectory, to study both their affinity and their stability towards CDK2 as a target protein for the cancer disease treatment. This research concluded with the identification of four new CDK2 inhibitors which are A1, A3, A5, and A6 showing good pharmacokinetic properties. The MDs results revealed that the newly designed compound A5 remained stable in the active center of the discovered CDK2 protein, indicating its potential as a novel inhibitor for the treatment of hepatocellular carcinoma. The current findings may eventually contribute to the development of robust CDK2 inhibitors in the future.

Communicated by Ramaswamy H. Sarma

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.