137
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phytocompounds screening of Nigella sativa in terms of human cancer by targeting sphingosine kinase-1 and pyruvate kinase-M2: a study based on in silico analysis

&
Pages 1544-1558 | Received 08 Nov 2022, Accepted 03 Apr 2023, Published online: 17 May 2023
 

Abstract

Cancer is a multifactorial disease that can cause morbidity and mortality in humans. An altered gene expression in cancer leads to a change in the overall activity of the human cell. Overexpression of cancer protein may give a piece of wide information about the specific type of tumor. Sphingosine kinase-1 (SK-1) is a metabolic enzyme that is mainly overexpressed in several types of cancer and other inflammatory diseases. Similarly, pyruvate kinase-M2 (PK-M2) is an important oncogenic ATP-producing glycolytic enzyme that is upregulated in most cancer cells. The phytocompound of medicinal plants such as Nigella sativa contains a variety of micronutrients that inhibit the proliferation and activity of tumor cells. In this study, the role of phytocompounds in combating cancer was studied against the model kinase proteins, that is, PK-M2 and SK-1. In silico tool like the PASS-Way2Drug server was used to predict the anticancer properties of phytocompounds. Moreover, the CLC-Pred web server provided the cytotoxicity prediction of chemical compounds against several human cancer cell lines. The pharmacokinetics and toxicity profiles were predicted by the SwissADME and pkCSM software. The binding energies were obtained by molecular docking to confirm the intermolecular interaction of selected phytocompounds with proteins. Consequently, molecular dynamics (MD) simulation confirmed the stability, conformational changes, and dynamic behavior of the kinase proteins complexed with the lead phytocompounds, that is, epicatechin, apigenin, and kaempferol.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare no conflict of interest.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.