113
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structure-based virtual screening, molecular docking, and molecular dynamics simulation approaches for identification of new potential inhibitors of class a β-lactamase enzymes

, &
Pages 5631-5641 | Received 09 Apr 2023, Accepted 14 Jun 2023, Published online: 26 Jun 2023
 

Abstract

Bacteria are smart organisms that create drug resistance by decreasing the effect of antibiotics in different ways, such as secretion of the β-lactamase enzymes. Finding the compounds that can act as the inhibitors of these enzymes is a great help in reducing drug resistance and treat all types of infections. In this study, using molecular docking and molecular dynamics simulation techniques, we introduced two Relebactam substructures as new inhibitors of class A β-lactamase enzymes. Results of molecular docking show that the conformation of these two compounds in the active site of class A β-lactamase enzymes has a good match with Relebactam and their binding affinity to enzymes is equal to or better than Relebactam. Results showed a good tendency for binding and the formation of van der Waals and hydrogen interactions between the desired compounds and the β-lactamase enzymes. The results of the analysis of the molecular dynamics simulation trajectories showed that in the presence of the desired compounds, the second structures of the enzymes did not undergo many changes and in none of the systems, the binding of the compounds to the enzyme did not cause much instability, and in most cases made the structure stable. The hydrogen bonds were stable during the simulation time and in most cases, the new compounds formed more hydrogen bonds and had better binding affinity than Relebactam confirms the docking results. The results of this study can be helpful in designing new beta-lactamase inhibitors and new treatment methods to deal with drug resistance.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.