181
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A comparison of two reflectivity parametrizations in acoustic least-squares reverse time migration

&
Pages 256-269 | Received 08 Jan 2019, Accepted 02 Jun 2019, Published online: 26 Nov 2019
 

ABSTRACT

In comparison with conventional reverse time migration (RTM), least-squares RTM (LSRTM) can improve imaging resolution and compensate irregular illumination caused by acquisition geometry and complex structures. Since proposed, as an advanced version of RTM, it has been applied a lot to improve resolution and balance amplitude in imaging. Generally, in LSRTM, there are two kinds of LSRTM reflectivity models: velocity perturbation related reflectivity model and normal-incidence reflection coefficient related reflectivity model. Each has its specific physical meaning and provides different inverted results. In this paper, we first give a brief review about the two different definitions. Then, we compare the differences of these two methods and build a mathematical relationship. In the definition related to reflection coefficient model, we rescale the defined reflectivity with background velocity. Also, in source wavefield reconstruction, we use an effective trick by moving file pointer to fetch data from disk to reduce the memory cost. Finally, we test these two LSRTM schemes using the Marmousi model. We observe that the two inverted reflectivities are different, although they both image the subsurface discontinuities well. We furthermore extract traces from the inversion results and compare them with the true reflectivity models, respectively, to verify the physical definitions of them.

Acknowledgments

We are grateful to Associate editor Jianxiong Chen and three reviewers for very kind comments and helpful suggestions which greatly improved the quality of our paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

We thank the China Postdoctoral Science Foundation (under grant 2019M652196) for supporting this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 249.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.