Publication Cover
Immunological Investigations
A Journal of Molecular and Cellular Immunology
Volume 51, 2022 - Issue 5
253
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Fibroblast-like Synoviocytes-derived Exosomal PCGEM1 Accelerates IL-1β-induced Apoptosis and Cartilage Matrix Degradation by miR-142-5p/RUNX2 in Chondrocytes

, , &
Pages 1284-1301 | Published online: 23 Jun 2021
 

ABSTRACT

Background

Long non-coding RNA (lncRNA) prostate cancer gene expression marker 1 (PCGEM1) has been revealed to participate in the pathogenesis of osteoarthritis (OA). However, the molecular mechanism of PCGEM1 regulating OA progression has not been fully elucidated.

Methods

Fibroblast-like synoviocytes (FLSs) were isolated from synovium tissues of OA patients (OA-FLSs) and trauma donors (Normal-FLSs). The size and morphology of the isolated exosomes were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Protein levels were analyzed by western blotting. Expression levels of PCGEM1, microRNA-142-5p (miR-142-5p), runt-related transcription factor 2 (RUNX2) mRNA, and OA related genes were assessed by qRT-PCR. Cell proliferation, viability, and apoptosis were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide or flow cytometry assays. The relationship between miR-142-5p and PCGEM1 or RUNX2 was verified by dual-luciferase reporter and/or RNA pull down assays.

Results

PCGEM1 was overexpressed in OA cartilages and exosomes from OA-FLSs. Exosomal PCGEM1 from OA-FLSs facilitated IL-1β-induced apoptosis and cartilage matrix degradation in chondrocytes. MiR-142-5p was downregulated while RUNX2 was upregulated in OA cartilages. Exosomal PCGEM1 from OA-FLSs regulated RUNX2 expression by sponging miR-142-5p in IL-1β-induced chondrocytes. MiR-142-5p inhibitor offset exosomal PCGEM1 knockdown-mediated effects on the apoptosis and cartilage matrix degradation of IL-1β-induced chondrocytes. RUNX2 overexpression counteracted the suppressive effect of miR-142-5p mimic on apoptosis and cartilage matrix degradation of IL-1β-induced chondrocytes.

Conclusion

Exosomal PCGEM1 from OA-FLSs facilitated IL-1β-induced apoptosis and cartilage matrix degradation in chondrocytes by sequestering miR-142-5p and upregulating RUNX2, which offered new insights into the pathogenesis of OA.

Author contributions

Guangxuan Zeng and Gang Deng designed and supervised the study. Guangxuan Zeng conducted the experiments and drafted the manuscript. Shiliang Xiao collected and analyzed the data, contributed the methodology. Fei Li edited the manuscript. All authors read and approved the final manuscript.

Data availability statement

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed on the publisher’s website.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,480.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.