Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 3
189
Views
0
CrossRef citations to date
0
Altmetric
Articles

Novel polymethyl methacrylate modified with metal methacrylate monomers: biological, physicomechanical, and optical properties

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 250-259 | Received 30 Jun 2021, Accepted 16 Mar 2022, Published online: 25 Mar 2022
 

Abstract

This study sought to evaluate the physical and antimicrobial properties of a thermopolymerizable acrylic resin (PMMA) modified with metallic methacrylate monomers -zirconia (ZM), tin (TM), and di-n-butyl (DNTMB) methacrylates. Color stability was evaluated before and after immersion of samples in a staining solution by a digital spectrophotometer. The mechanical brushing test was evaluated by the roughness test. The flexural strength test used a mechanical testing machine. Human keratinocytes were used to assess cell viability and the biofilm formation assay was carried out for 5 days, in a microcosms model after one year of specimen storage. For statistical analysis, the method chosen was based on adherence to the normal distribution model and equality of variances (p < 0.05). The addition of DNTMB to PMMA promoted great antimicrobial action, acceptable cytocompatibility, without hampering the physical-mechanical properties of the commercial material. Therefore, the modified PMMA proved to be a promisor alternative to conventional resins.

This study sought to evaluate the physical and antimicrobial properties of a thermopolymerizable acrylic resin (PMMA) modified with metallic methacrylate monomers -zirconia (ZM), tin (TM), and di-n-butyldimethacrylate-tin (DNTMB) methacrylates. Color stability was evaluated before and after immersion of samples in a staining solution using a digital spectrophotometer. The mechanical brushing test was evaluated by the roughness test. The flexural strength test used a mechanical testing machine. Human keratinocytes were used to assess cell viability and the biofilm formation assay was carried out for 5 days in a microcosm model after one year of specimen storage. For statistical analysis, the method chosen was based on adherence to the normal distribution model and equality of variances (p < 0.05). The addition of DNTMB to PMMA promoted great antimicrobial action, acceptable cytocompatibility, without hampering the physical-mechanical properties of the commercial material. Therefore, the modified PMMA proved to be a promising alternative to conventional denture base resins for dental use.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel - Brazil (CAPES) Finance Code 001. The authors would also like to thank Brazilian National Council for Scientific and Technological Development (CNPq) Grant# 309848/2017-2 for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 939.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.