856
Views
13
CrossRef citations to date
0
Altmetric
Articles

Ice adhesion mechanism on lubricant-impregnated surfaces using molecular dynamics simulations

&
Pages 394-402 | Received 22 Apr 2018, Accepted 10 Aug 2018, Published online: 26 Aug 2018
 

ABSTRACT

Ice formation causes numerous problems in many industrial fields as well as in our daily life. The control of ice nucleation and rational design of anti-icing surface with low ice adhesion are desirable in various industries such as aircraft, power line, ships, building, and cryopreservation. However, despite considerable attention in the development of ice or water-repellent surfaces, it is still challenging to design icephobic or anti-icing surfaces with high resistance to icing. In this study, coarse-grained molecular dynamics simulation is utilised to investigate the ice adhesion mechanism on lubricant-infused nanotextured surfaces. Using steered molecular dynamics simulation, we find that the adhesion strength of ice on nanotextured surfaces impregnated with lubricant films to be higher compared to that on textured surfaces in presence excess lubricant films. We illustrate that the ice adhesion strength depends on the texture density and the ice adhesion strength increases with nanoposts density. Lubricant-impregnated surfaces (LISs) with higher posts density exhibit greater adhesive interaction energy due to the large contact area between the icecube and the textured surface. This systematic study enhances our understanding of ice adhesion mechanism on LISs which can apply for designing novel anti-icing surfaces with extremely weak ice adhesion strength.

Acknowledgements

The computational resources are provided by the High Performance Computing facilities of Indian Institute of Technology Kanpur.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work is supported by the Department of Science and Technology (DST), Government of India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.