154
Views
6
CrossRef citations to date
0
Altmetric
Articles

Molecular dynamics simulation study of Glycine tip-functionalisation of single-walled carbon nanotubes as emerging nanovectors for the delivery of anticancer drugs

, , &
Pages 111-120 | Received 23 Dec 2017, Accepted 02 Oct 2019, Published online: 31 Oct 2019
 

ABSTRACT

In this work, molecular dynamics (MD) simulations have been performed to explore dynamic properties of three anticancer drugs including Exemestane (EXE), Letrozole (LTZ) and Fulvestrant (FLV) interacting with single-walled carbon nanotubes (SWCNTs) as drug delivery systems in a biological environment. Furthermore, the effect of functionalisation of SWCNTs with Glycine (Gly) group on the drug adsorption process is investigated. The MD simulation results show that among three investigated drugs, FLV with high hydrophobic characteristic exhibits the strongest affinity for hydrophobic SWCNT (16, 8) in terms of the binding free (ΔGbin) amount energy. Moreover, strong binding of FLV drug molecules on the functionalised single-walled carbon nanotube (f-SWCNT) with (16, 0) chirality is facilitated by more active sites available for hydrogen bond (HB) formation between drug molecules and the functional groups of SWCNT. Because of more number of HBs in the simulation system, there are more numbers of hydrophilic interactions between the adsorbed drug molecules and the functional groups of the nanotube.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.