98
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Identification of Pulmonary Nodules by Sweeping the Surface of the Lung with an Electrical Bioimpedance Probe: A Feasibility Study

, MSc, , PhD & , MD
Pages 614-623 | Received 06 Nov 2017, Accepted 23 Feb 2018, Published online: 19 Mar 2018
 

ABSTRACT

Purpose: Identifying and localizing the invisible and nonpalpable pulmonary nodules are among the main challenges surgeons face during open and thoracoscopic surgeries. This in vitro study explores the feasibility of utilizing a simple and safe electrical bioimpedance probe in locating the pulmonary nodules by sweeping the surface of the lung tissue. Methods: A probe was designed with four spherical electrodes that were used for recording the bioimpedance spectrum of the lung tissue in a frequency range of 50 kHz to 5 MHz. In each of the 10 resected surgical specimens, the bioimpedance of normal lung tissue as well as the tumoral lung tissue were recorded and compared with each other. Results: By drawing the Nyquist curves, it was determined that the amplitude of the electrical impedance measured by moving the probe from the healthy point to the region of the pulmonary nodule decreases and the frequency characteristics of the bioimpedance spectrum increases. Conclusion: This method could be potentially beneficial in the localization of invisible and even nonpalpable in-depth pulmonary nodules in thoracic surgeries.

DECLARATION OF INTEREST

No potential conflicts of interest were disclosed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.