Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 31, 2019 - Issue 5
295
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Lung damage following whole body, but not intramuscular, exposure to median lethality dose of sarin: findings in rats and guinea pigs

, , , , & ORCID Icon
Pages 203-211 | Received 12 Dec 2018, Accepted 12 Jul 2019, Published online: 30 Jul 2019
 

Abstract

Objective: Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic, volatile warfare agent. Rats and guinea pigs exposed to sarin display cholinergic excitotoxicity which includes hyper-salivation, respiratory distress, tremors, seizures, and death. Here we focused on the characterization of the airways injury induced by direct exposure of the lungs to sarin vapor and compared it to that induced by the intramuscularly route.

Materials and methods: Rats were exposed to sarin either in vapor (∼1LCT50, 34.2 ± 0.8 µg/l/min, 10 min) or by i.m. (∼1LD50, 80 µg/kg), and lung injury was evaluated by broncho-alveolar lavage (BAL).

Results and discussion: BAL analysis revealed route-dependent effects in rats: vapor exposed animals showed elevation of inflammatory cytokines, protein, and neutrophil cells. These elevations were seen at 24 h and were still significantly higher compared to control values at 1 week following vapor exposure. These elevations were not detected in rats exposed to sarin i.m. Histological evaluation of the brains revealed typical changes following sarin poisoning independent of the route of administration. The airways damage following vapor exposure in rats was also compared to that induced in guinea pigs. The latter showed increased eosinophilia and histamine levels that constitutes an anaphylactic response not seen in rats.

Conclusions: These data clearly point out the importance of using the appropriate route of administration in studying the deleterious effects of volatile nerve agents, as well as the selection of the appropriate animal species. Since airways form major target organs for the development of injury following inhalation toxicity, they should be included in any comprehensive evaluation of countermeasures efficacy.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was funded by Israel Institute for Biological Research (IIBR).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.