Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 33, 2021 - Issue 3
180
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

TXNIP, CXCL1, and AREG as key genes in formaldehyde-induced head and neck carcinoma: an in silico analysis

, , , &
Pages 113-120 | Received 09 Dec 2020, Accepted 21 Mar 2021, Published online: 06 Apr 2021
 

Abstract

Background

Reports have shown that formaldehyde (FA) can induce malignant transformation in cells via complicated mechanisms. Therefore, we aimed to investigate the possible molecules, pathways, and therapeutic agents for FA-induced head and neck cancer (HNC) by using bioinformatics approaches.

Methods

High throughput data were analyzed to screen the differentially expressed genes (DEGs) between FA-treated nasal epithelium cells and controls. Then, the functions of the DEGs were annotated and the hub genes, as well as the key genes, were further screened out. Afterwards, potential drugs were predicted by using the connectivity map (CMAP) tool.

Results

The information of a microarray-based dataset GSE21477 was extracted and analyzed. A total of 210 upregulated and 83 downregulated DEGs were generated, which might be enriched in various pathways, such as Cytokine–cytokine receptor interaction, Jak-STAT signaling pathway, and Toll-like receptor signaling pathway. Among these DEGs, three hub genes including TXNIP, CXCL1, and AREG, were identified as the key genes because they might affect the prognosis of HNC. Finally, a major active ingredient of blister beetles, Cantharidin, was predicted to be one of the potential drugs reversing FA-induced malignant transformation in head and neck epithelium cells.

Conclusion

The present analysis gave us a novel insight into the mechanisms of FA-induced malignant transformation in head and neck epithelium cells, and predicted several small agents for the prevention or treatment of HNC. Future experiment studies are warranted to validate the findings.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.