Publication Cover
Inhalation Toxicology
International Forum for Respiratory Research
Volume 34, 2022 - Issue 5-6
205
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Inhalation of PM2.5 from diesel exhaust promote impairment of mitochondrial bioenergetics and dysregulate mitochondrial quality in rat heart: implications in isoproterenol-induced myocardial infarction model

&
Pages 107-119 | Received 08 Oct 2021, Accepted 11 Feb 2022, Published online: 15 Mar 2022
 

Abstract

Aim: Ambient exposure of PM2.5 from diesel exhaust (termed as diesel particulate matter [DPM]) can induce cardiotoxicity that can be manifested into myocardial ischemia/infarction, where the survival depends on mitochondrial function. The mechanism for DPM-induced mitochondrial dysfunction is yet to be elucidated and the consequential impact of impaired mitochondria on the severity of myocardial infarction (MI) has not been established.

Materials and methods: Female Wistar rats were exposed to DPM (0.5 mg/ml) for 3 h daily (to achieve a PM2.5 concentration of 250 µg/m3) for 21 d trailed by an induction of MI using isoproterenol (ISO).

Conclusion: DPM exposure altered the basal ECG pattern and increased heart weight (HW) to body weight (BW) ratio from control. Loss of mitochondrial quality in the cardiac tissue was observed in DPM exposed animals, measured via declined ETC enzyme activity, reduced ATP levels, high oxidative stress, low mitochondrial copy number, and low expression of the mitochondrial genes involved in mitophagy (PINK and PARKIN) and mitochondrial fusion (MFN-1). Subsequent induction of MI in DPM exposed animals (DPM + ISO) further deteriorated the normal sinus rhythm, accompanied by elevated plasma CK and LDH level, increased myocardial caspase activity, downregulation of Peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), transcription factor A (TFAM), DNA polymerase subunit gamma (POLG), and other mitochondrial quality control genes. Based on these results, we conclude that DPM alters the electrophysiology and ultrastructure of the heart that aggravates the MI-induced cardiotoxicity, where the diminished mitochondrial quality can be the potential contributor.

Acknowledgements

The authors acknowledge Ms Priyanka Prem (CSIR No: 09/1095/(0040)/2018-EMR-1) for assisting in the RT PCR experiments.

Consent for publication

We, the authors give consent for the publication of identifiable details, which can include photographs or details within the text (‘Material’) to be published in the above Journal and therefore, anyone can read the material published in the Journal.

Ethical approval

Approved by IAEC.

Disclosure statement

The authors declare that they have no conflict of interest.

Data availability statement

Available upon request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 389.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.