93
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Secondary somatosensory area is involved in vibrotactile temporal-structure processing: MEG analysis of slow cortical potential shifts in humans

ORCID Icon, , &
Pages 222-232 | Received 19 Jan 2020, Accepted 15 Jun 2020, Published online: 29 Jun 2020
 

Abstract

Purpose: Temporal-structure discrimination is an essential dimension of tactile processing. Exploring object surface by touch generates vibrotactile input with various temporal dynamics, which gives diversity to tactile percepts. Here, we examined whether slow cortical potential shifts (SCPs) (<1 Hz) evoked by long vibrotactile stimuli can reflect active temporal-structure processing.

Materials and methods: Vibrotactile-evoked magnetic brain responses were recorded in 10 right-handed healthy volunteers using a piezoelectric-based stimulator and whole-head magnetoencephalography. A series of vibrotactile train stimuli with various temporal structures were delivered to the right index finger. While all trains consisted of identical number (15) of stimuli delivered within a fixed duration (1500 ms), temporal structures were varied by modulating inter-stimulus intervals (ISIs). Participants judged regularity/irregularity of ISI for each train in the active condition, whereas they ignored the stimuli while performing a visual distraction task in the passive condition. We analysed the spatiotemporal features of SCPs and their behaviour using the minimum norm estimates with the dynamic statistical parametric mapping.

Results: SCPs were localized to contralateral primary somatosensory area (S1), contralateral superior temporal gyrus, and contralateral as well as ipsilateral secondary somatosensory areas (S2). A significant enhancement of SCPs was observed in the ipsilateral S2 (S2i) in the active condition, whereas such effects were absent in the other regions. We also found a significant larger amplitude difference between the regular- and irregular-stimulus evoked S2i responses during the active condition than during the passive condition.

Conclusions: This study suggests that S2 subserves the temporal dimension of vibrotactile processing.

Disclosure statement

No conflicts of interest are declared by the author(s).

Additional information

Funding

This work was supported by the Grant-in-Aid for Scientific Research on Innovative Areas, Japan Society for the Promotion of Science in Japan [Project No. 23135525].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 711.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.