306
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Collagen/Nigella sativa/chitosan inscribed electrospun hybrid bio-nanocomposites for skin tissue engineering

, , , & ORCID Icon
Pages 1517-1538 | Received 12 Aug 2022, Accepted 16 Jan 2023, Published online: 16 Feb 2023
 

Abstract

The sophisticated new tissue regeneration focused on nanocomposite with different morphologies achieved through advanced manufacturing technology with the inclusion of bio-inscribed materials has piqued the research community’s interest. This research aims at developing hybrid bio-nanocomposites with collagen (Col), Nigella sativa (Ns) oil and chitosan (Cs) by a bi-layered green electrospinning on polyvinyl chloride (PVA) layer in a different ratio for tissue regeneration. Fiber morphologies through scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), moisture management, tensile test, antibacterial activity, cell cytotoxicity and wound healing through rabbit model of the fabricated hybrid bio-nanocomposites were investigated. It is worth noting that water-soluble Col (above 60% solution) does not form Taylor cones during electrospinning because unable to overcome the surface tension of the solution (viscosity) to form fibers. The results show that water soluble Col (50% solution) to Cs (25% solution) and Ns (25% solution) has good fiber formation with mean diameter 384 ± 27 nm and degree of porosity is 79%. The fast-absorbing and slow-drying hybrid bio-nanocomposites maintain a moist environment for wounds and allowing gaseous exchange for cell migration and proliferation by the synergistic effects of bio-polymers. All of the biopolymers in bio-nanocomposite improve the H-bonds, which accounts for enough tensile strength to withstand cell pulling force. The antibacterial ZOI concentrations against S. aureus and E. coli were 10 and 8 mm, respectively, which appeared to be sufficient to inhibit bacterial action with 100% cell viability (cytotoxicity). The synergistic effects of Ns and Cs improve tissue regeneration, while native Col improves antibacterial activity, and the rabbit model achieves approximately 84% wound closure in only 10 days, which is 1.5 times faster than the control model. So, the fabricated hybrid bio-composites may be useful for skin tissue engineering.

HIGHLIGHTS

  • Fabrication of bio-inscribed (green) electrospun hybrid bio-nanocomposite by the novel bi-layer technique

  • The developed complex (fast absorbing and slow drying composite) absorbs exudate from the wound to provide a suitable moist environment for healing and tissue regeneration

  • Antibacterial susceptibility is boosted by the synergistic effects of Nigella sativa and chitosan, while tissue regeneration is improved (approx. 10 days for rabbit model) by native collagen with no cytotoxicity

  • Water soluble collagen (above 60% solution) will not produce fibers as unable to surmount the surface tension of the solution (viscosity) and increasing amount of Nigella sativa decrease the inhibition zone against gram-negative bacteria

Acknowledgements

The authors are ever grateful and extremely pleased to express their sincere deep sense to Mr. Ayub Ali, Assistant Professor, Department of Textile Engineering, Dhaka University of Engineering & Technology (DUET), Gazipur, for scholarly suggestions, encouragements, and helps during the research period.

Disclosure statement

The corresponding author declares that there is no conflict of interest, and additionally it is a part of M.Sc. in TE (Fabric Engineering), BUTEX thesis.

Ethical clearance

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.