158
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of propolis coating on antibacterial resistance of intrauterine devices

, , & ORCID Icon
Pages 295-305 | Received 15 Sep 2023, Accepted 15 Nov 2023, Published online: 22 Nov 2023
 

Abstract

Intrauterine devices (IUDs) are widely used in preventing fertilization as contracepting devices. In market, they are produced as T-shaped polyethylene (or propylene) and metal (especially copper) composites. Although the metal component is utilized to provide antibacterial efficacy, prolonged implantation and the presence of a wide range of bacteria flora in the intrauterine environment make IUDs susceptible to bacterial contamination, biofilm formation, and unpleasant infection. In the presented study, the propolis, a natural anti-bacterial/-viral product used for different biomedical applications, coating strategy was applied comparatively in three different ways: coating directly on metal components, coating on polymeric material, and using carrying polymer. In addition, antibacterial activity against Gram-positive (Staphylococcus aureus, S. aureus) and Gram-negative (Escherichia coli, E. coli) bacterial strains were investigated by both dynamic bacterial culture (bacterial inhibition activity) and biofilm (biofilm formation resistance) tests. As a result of 48 h of dynamic bacterial culture; it was determined that the antibacterial inhibition efficiency depending on propolis concentration increased up to 99.5% and 98.5% for E. coli and S. aureus, respectively. In addition, the carrying polymer allows IUDs to cover surfaces more homogeneously, as well as improve antibacterial activity. Similarly; it was determined that biofilm formation resistance was improved by 44.33% for E. coli and by 45.99% for S. aureus with both the propolis concentration and the use of carrying polymer. As a result, it has been revealed that propolis will be classified as an alternative, promising, and effective coating agent for improving antibacterial properties and biofilm formation resistance of IUDs.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.