202
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Quad element MIMO antenna for LTE/5G (sub-6 GHz) applications

ORCID Icon, & ORCID Icon
Pages 2357-2372 | Received 29 Sep 2021, Accepted 07 May 2022, Published online: 16 May 2022
 

Abstract

A quad-element multiple-input-multiple-output (MIMO) antenna with fractional bandwidth (FBW) of 52.42% (3.35–5.73 GHz) is proposed for LTE, WLAN (4.9/5 GHz), and 5G (sub-6 GHz) applications. The bandwidth is improved by introducing a tapered feed line and rectangular stubs in the partial ground plane. The maximum isolation of the proposed MIMO antenna is 27 dB. The diversity performance characteristics of the proposed antenna are studied in terms of the envelope correlation coefficient (ECC), diversity gain (DG), mean effective gain (MEG), total active reflection coefficient (TARC), isolation between the ports, and channel capacity loss (CCL) and the values obtained are 0.003, 9.98 dB, ±3 dB, −4 dB, −10 dB, and 0.10 bits/s/Hz respectively. A model of the proposed antenna is fabricated on the FR-4 substrate having a dielectric constant of 4.4 and a loss tangent of 0.02 with an electrical dimension of 0.45λ0 × 0.45λ0. The measured results demonstrate a decent likeness to simulated ones in the entire operating frequency range.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.