138
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Analysis of electromagnetic/thermal coupling of Debye media using HIE-FDTD method

, &
Pages 939-949 | Received 14 Nov 2022, Accepted 17 Apr 2023, Published online: 24 May 2023
 

Abstract

In this paper, the multi-physical working mechanism of the Debye dispersive media is studied in detail, and the coupling analysis of Maxwell's and heat conduction equations is carried out. The hybrid-implicit-explicit finite difference time domain (HIE-FDTD) method is applied to accelerate calculation of the electromagnetic(EM). The Debye model, introduced to HIE-FDTD through the auxiliary difference equation (ADE) technique by utilizing polarization current, describes the dispersion characteristics of a water-based absorber. In addition, a new expression of transient power loss density is proposed with the polarization current, which overcomes the negative power loss in the traditional method and makes the computation more accurate. Finally, the analysis proves that the ADE-HIE-FDTD method has good performance in the EM-thermal coupling calculation, and the absorption rate of the absorber shows the interaction effect between temperature distribution and dielectric material.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.