20
Views
0
CrossRef citations to date
0
Altmetric
Articles

Efficient monostatic anisotropic point scatterer model for high performance computing

&
Pages 522-537 | Received 07 Sep 2022, Accepted 31 Jan 2024, Published online: 13 Mar 2024
 

ABSTRACT

High performance computing (HPC) electromagnetic (EM) emulators are used to simulate real-time EM wave interactions between numerous radar targets. Radar Cross Section (RCS) data stores reflection profiles of radar targets as a table; however, the needed storage size increases with frequency sampling density, aspect angle sampling density, and number of target types. The large quantity of data often exceeds storage capability and limits manipulation and representation feasibility. The spherical harmonic based monostatic anisotropic point scatterer model is proposed for HPC EM simulations where scattering responses can be computed with finite impulse response (FIR) filters. An efficient algorithm constructing this model with large scale RCS data is discussed. The scatterer position and the reflection profile of each scatterer are solved using least squares methods and particle swarm optimization (PSO). In addition, the function evaluations in PSO are accelerated by taking advantage of the matrix structure, making the algorithm 22 times faster

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.