76
Views
0
CrossRef citations to date
0
Altmetric
Articles

Application of the standard coupled-mode formalism to the analysis of holey photonic crystals

, , &
Pages 618-628 | Received 10 Nov 2017, Accepted 15 Mar 2018, Published online: 28 Dec 2018
 

ABSTRACT

Presented below is a new, Standard Coupled-mode Theory (CMT) based approach for analysis of optical characteristics of holey photonic crystals (i.e., photonic devices, built on periodicity of holes in dielectric media). This class of devices encompasses the majority of photonic crystal fibres and several kinds of modern thresholdless lasers. Naturally, holey photonic crystals were considered as a sequence of holes, surrounded by dielectric media. This model made it impossible to utilise CMT for analysing their characteristics. The underlying idea of our approach is a different physical model, considering holey photonic devices as a sequence of coupled dielectric spots (waveguides), surrounded by air. This model can be combined with the Standard Coupled-mode formalism. The latter combination allows fast (on a timescale of several minutes to tens of minutes) and accurate analysis of holey photonic devices. Moreover, it gives a deeper insight into the behaviour of EM fields in holey photonic crystals.

Acknowledgements

Vladislav Shteeman would like to thank Nir Shteeman for his help and support; in particular, for his help in preparation of the figures.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.