158
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Toolkit implementation to exchange phase-space files between IAEA and MCNP6 monte Carlo code format

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 373-383 | Received 16 Apr 2021, Accepted 22 Jun 2022, Published online: 17 Jan 2023
 

Abstract

Purpose

Some Monte Carlo simulation codes can read and write phase space files in IAEA format, which are used to characterize accelerators, brachytherapy seeds and other radiation sources. Moreover, as the format has been standardized, these files can be used with different simulation codes. However, MCNP6 has not still implemented this capability, which complicate the studies involving this kind of sources and the reproducibility of results among independent researchers. Therefore, the purpose of this work is to develop a tool to perform conversions between IAEA and MCNP6 phase space files formats, to be used for Monte Carlo simulations.

Materials and Methods

This paper presents a toolkit written in C language that uses the IAEA libraries to convert phase space files between IAEA and MCNP6 format and vice versa. To test the functionality of the provided tool, a set of verification tests has been carried out. In addition, a linear accelerator treatment has been simulated with the PENELOPE library using the PenEasy framework, which is already capable to read and write IAEA phase space files, and MCNP6 using the developed tools.

Results

Both codes show compatible depth dose curves and profiles in a water tank, demonstrating that the conversion tools work properly. Moreover, the phase space file formats have been converted from IAEA to MCNP6 format and back again to IAEA format, reproducing the very same results.

Conclusion

The toolkit developed in this work offers MCNP6 scientific community an external and validated program able to convert phase space files in IAEA format to MCNP6 internal format and use them for Monte Carlo applications. Furthermore, the developed tools provide also the reverse conversion, which allow sharing MCNP6 results with users of other Monte Carlo codes. This capability in the MCNP6 ecosystem provides to the scientific community the ability not only to share radiation sources, but also to facilitate the reproducibility among different groups using different codes via the standard format specified by the IAEA.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes

Additional information

Funding

This study was supported by the program ‘Ayudas para la promoción de empleo joven e implantación de la Garantía Juvenil en I+D+i, Plan Estatal de Investigación Científica y Técnica e Innovación 2017–2020. Ministerio de Ciencia, Innovación y Universidades’ from ‘Iniciativa de Empleo Juvenil (IEJ)’ and Fondo Social Europeo (FSE)’ Grant number PEJ2018-001678-A.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.