361
Views
13
CrossRef citations to date
0
Altmetric
Articles

Effect of increasing salinity and low C/N ratio on the performance and microbial community of a sequencing batch reactor

, , , &
Pages 1213-1224 | Received 09 Jul 2019, Accepted 20 Aug 2019, Published online: 31 Aug 2019
 

ABSTRACT

The purpose of this study was to investigate the effects of increasing salinity on the performance and microbial community structure in a sequencing batch reactor (SBR) treating low C/N ratio wastewater. The SBR was subjected to a gradual increased salinity from 0 wt% to3.0 wt% under low Chemical Oxygen Demand (COD)/N ratio, operating for 80 days. The study results indicated that high salinity decreased the removal efficiency of ammonium (NH4+-N) from 77.09% (1.0 wt%) to 45.7% (3.0wt%). The organic matter removal are not significantly affected by the high salinity. Non-metric Multi-Dimensional Scaling (NMDS) analysis showed that the gradual increased salinity altered the overall bacterial community structure, and low salinity (1wt%) promoted the bacterial diversity, while high salinity (2 and 3 wt%) significantly decreased the bacterial diversity in low C/N ratio activated sludge system. Further analysis revealed that two genera related to nitrification process (unclassified-Nitrosomonadales and g-Nitrospira) were inhibited, while a genus related to organic removal (Piscicoccus) and three genera related to denitrification (Rodobacteraceae, Denitromonas and Hyphomicrobium) increased significantly at a salinity of 3 wt%. This study provides insights of shifts in the bacteria community under the stress of high salinity in low C/N ratio of activated sludge systems.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by the National Key Research and Development Program of China [grant number 2016YFC0401105], the Open Research Fund Program of Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry [grant number CP-2018-YB4] and TianJin Municipal Science and Technology Project [grant number 17YFCZZC00490].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.