729
Views
18
CrossRef citations to date
0
Altmetric
Articles

Enhanced degradation of benzo[a]pyrene and toxicity reduction by microbubble ozonation

, &
Pages 1853-1860 | Received 09 Jul 2019, Accepted 15 Oct 2019, Published online: 21 Nov 2019
 

ABSTRACT

The microbubble technique has drawn great attention for efficient utilization of ozone for advance oxidation processes. Therefore, in this study, microbubble ozonation was investigated to evaluate the removal efficiency and toxicity reduction of benzo[a]pyrene. Compared with conventional macrobubble ozonation, microbubble ozonation produced higher concentrations of hydroxyl radicals and ozone in aqueous solutions, resulting in more efficient and persistent degradation of benzo[a]pyrene. Moreover, microbubble ozonation completely removed the acute toxicity of benzo[a]pyrene to Daphnia magna, whereas the toxicity reduction by macrobubble ozonation was not consistent owing possibly to toxic degradation products. These findings suggest that microbubble ozonation is a promising technique in terms of both chemical degradation and toxicity reduction of organic pollutants.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by a Korea University [grant number K1920931] and United Arab Emirates University National Water Center [grant number 31R112].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.