222
Views
5
CrossRef citations to date
0
Altmetric
Articles

New insights into the structure of membrane fouling by biomolecules using comparison with isotherms and ATR-FTIR local quantification

, , , , , & ORCID Icon show all
Pages 207-224 | Received 22 Nov 2019, Accepted 08 Jun 2020, Published online: 06 Jul 2020
 

ABSTRACT

The objective of this paper was to propose a deepened analyze of a microfiltration membrane fouling by two biomolecules: a protein (Bovine Serum Albumin) and a peptide (Glutathione). In addition to an analysis of flux decline, the mass of biomolecules accumulated on the membrane during filtration was quantified and compared to adsorption experiments, using Fourier Transform Infra Red spectroscopy in Attenuated Total Reflection mode (ATR-FTIR). It was demonstrated that the same quantity of accumulated biomolecules on the apparent membrane area can generate totally different flux declines because of different fouling mechanisms. On the one hand, Glutathione can adsorb in the whole porous media of the membrane, penetrating through the pores, modifying the hydrophilicity at low concentrations and generating pore constriction at high concentrations. On the other hand, BSA organize a dense irreversible fouling in the first minutes of filtration containing a quantity equivalent to more than 45 monolayers, leading to pore blocking and pore constriction. This structure is resistant to rinsing and NaOH cleaning. Then a reversible fouling, containing a quantity equivalent to more than 90 monolayers is settled. The above structure can be removed with an intensive water rinsing and corresponds to a rather porous cake leading to a low resistance to water permeation, whereas the intermediate structure can only be removed with chemical cleaning and has a higher impact on water permeation. The original approach detailed in this paper allowed to go deeper in the understanding of the membrane fouling by soft matter, not detailed in previous papers.

GRAPHICAL ABSTRACT

Acknowledgements

This work was supported by the Carnot Institute Centrale Supelec Science des Systèmes (C3S)

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Carnot Institute Centrale Supelec Science des Systèmes (C3S)

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.