335
Views
21
CrossRef citations to date
0
Altmetric
Articles

A comprehensive new study on the removal of Pb (II) from aqueous solution by şırnak coal-derived char

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 505-520 | Received 15 Jun 2020, Accepted 10 Aug 2020, Published online: 27 Aug 2020
 

ABSTRACT

In this study, char was prepared from the Şırnak coal derivative as a new adsorbent by the pyrolysis process and successfully applied for Pb (II) removal. Prepared char adsorbent was characterized by analysis techniques such as thermogravimetric (TG)/differential thermogravimetric (DTG), iodine number, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET) surface area. In the experimental design of the Pb (II) removal process, the relationship between operating factors (contact time, initial Pb (II) concentration and temperature) and process responses (adsorption capacity and removal efficiency) was modelled by applying response surface methodology (RSM). After that, the operating factors for the maximum adsorption capacity and removal efficiency of Pb (II) by char were optimized. In the removal of Pb (II), pseudo-first order and pseudo-second order kinetic models were used to determine the process mechanism. In addition, adsorption isotherm models such as Langmuir, Freundlich, and Dubinin-Radushkevich were applied to the equilibrium data to explain the adsorption mechanism between the adsorbent and adsorbate molecules. According to the results obtained, it was determined that kinetic and equilibrium isotherm data were better defined with pseudo-second order kinetic and Dubinin-Radushkevich isotherm models, respectively. The optimum values of the contact time, initial Pb (II) concentration, and temperature for maximum adsorption capacity (124.64 mg/g) and removal efficiency (92.35%) of Pb (II) were found as 150.00 min, 144.81 ppm, and 35.06°C, respectively. This study indicated the application potential of Şırnak coal-derived char as a promising cost-effective adsorbent for the removal of heavy metals.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.