532
Views
22
CrossRef citations to date
0
Altmetric
Articles

Prediction of municipal solid waste generation: an investigation of the effect of clustering techniques and parameters on ANFIS model performance

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1634-1647 | Received 30 Jul 2020, Accepted 23 Oct 2020, Published online: 27 Nov 2020
 

ABSTRACT

The present waste-management system in most developing countries are insufficient to combat the challenge of increasing rate of solid waste generation. Accurate prediction of waste generated through modelling approach will help to overcome the challenge of deficient-planning of sustainable waste-management. In modelling the complexity within a system, a paradigm-shift from classical-model to artificial intelligent model has been necessitated. Previous researches which used Adaptive Neuro-Fuzzy Inference System (ANFIS) for waste generation forecast did not investigate the effect of clustering-techniques and parameters on the performance of the model despite its significance in achieving accurate prediction. This study therefore investigates the impact of the parameters of three clustering-technique namely: Fuzzy c-means (FCM), Grid-Partitioning (GP) and Subtractive-Clustering (SC) on the performance of the ANFIS model in predicting waste generation using South Africa as a case study. Socio-economic and demographic provincial-data for the period 2008-2016 were used as input-variables and provincial waste quantities as output-variable. ANFIS model clustered with GP using triangular input membership-function (tri-MF) and a linear type output membership-function (ANFIS-GP1) is the optimal model with Mean Absolute Percentage Error (MAPE), Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE) and Correlation Co-efficient (R2) values of 12.6727, 0.6940, 1.2372 and 0.9392 respectively. Based on the result in this study, ANFIS-GP with a triangular membership-function is recommended for modelling waste generation. The tool presented in this study can be utilized for the national repository of waste generation data by the South Africa Waste Information Centre (SAWIC) in South Africa and in other developing countries.

GRAPHICAL ABSTRACT

Acknowledgements

The authors appreciate the management of the Department of Mechanical Engineering Science, University of Johannesburg, South Africa, for providing workspace and research facilities for this research.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.