279
Views
0
CrossRef citations to date
0
Altmetric
Articles

Efficient removal of 3,6-dichlorocarbazole with Fe0-activated peroxymonosulfate: performance, intermediates and mechanism

, , , &
Pages 2201-2214 | Received 11 Oct 2021, Accepted 18 Dec 2021, Published online: 03 Feb 2022
 

ABSTRACT

Nowadays, polyhalogenated carbazoles (PHCZs) are a major pollutant that has recently sparked widespread concern. In this work, peroxymonosulfate (PMS) was activated by zero valent iron (Fe0) to remove 3,6-dichlorocarbazole (3,6-CCZ). First, the key parameters influencing 3,6-CCZ degradation (PMS dosage, Fe0 dosage, initial pH, temperature and co-existing ions) were determined. Under the determined optimum conditions, the removal rate of 3,6-CCZ reached 100% within 1.5 h. Sulfate radicals (SO4·-), hydroxyl radicals (OH·), and singlet oxygen (1O2) generated in the reaction were directly identified with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO) by in-situ electron paramagnetic resonance (EPR) and indirectly identified by radical quenching experiments. The main reactive oxygen species (ROS) were different from most reported hydroxyl radicals (OH·) and sulfate radicals (SO4·-). In this study, it was found that OH· and 1O2 play a major role. Then, fresh and reacted Fe0 were characterized by XRD, SEM, and XPS. Iron corrosion products such as Fe2O3, Fe3O4, and FeOOH were generated. Finally, 3,6-CCZ degradation intermediates were identified by GC-MS and its degradation pathway was speculated. The intermediate pathway confirmed the combined action of (OH·) and (1O2) in 3,6-CCZ removal. This study provides new insight into the activation mechanism of Fe0-activated PMS and the removal mechanism of 3,6-CCZ.

Highlights

  • Fe0 is a long-lasting and efficient catalyst of PMS for the degradation of 3,6-CCZ.

  • The key parameters influencing 3,6-CCZ degradation were determined.

  • The degradation pathways of 3,6-CCZ were inferred.

  • OH· and 1O2 were the main ROS in Fe0-activated PMS system.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Additional information

Funding

This work was supported by Research project of ecological environment protection and restoration of Yangtze River in Zhoushan: [Grant Number SZGXZS2020068]; the National Key Research and Development Project: [Grant Number 2019YFC0408604].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.