209
Views
0
CrossRef citations to date
0
Altmetric
Articles

Iron (II) phthalocyanine loaded tourmaline efficiently activates PMS to degrade pharmaceutical contaminants under solar light

, , , &
Pages 3491-3503 | Received 26 Nov 2021, Accepted 27 Mar 2022, Published online: 15 May 2022
 

ABSTRACT

Iron (II) phthalocyanine (FePc) is loaded on the surface of the tourmaline (TM) by the reflow method to obtain FePc/TM. This research effectively prevents the π-π stacking of FePc, increased the effective utilization rate of PMS activation under solar light, and further improved the catalytic performance of the catalytic system. The catalytic oxidation efficiency of FePc/TM on carbamazepine (CBZ) and sulfadiazine (SD) can reach 99% under solar light for 15 and 5 min, the total organic carbon (TOC) removal rate can reach 58% and 69% under solar light for 120 min. After 6 cycles, the CBZ removal rate remained above 95%. In addition, the FePc/TM catalytic system has an excellent removal rate for other pharmaceuticals. The results of spin-trapped electron paramagnetic resonance and classical quenching experiments show that FePc/TM can effectively activate PMS to generate active species under solar light, including superoxide radical (•O2), singlet oxygen (1O2), hydroxyl radicals(•OH), and sulphate radicals (SO4). The intermediates of CBZ were identified by Ultra-high performance liquid chromatography and high resolution mass spectrometry, and the degradation pathway was proposed. As the reaction progresses, all CBZ and intermediates are reduced and converted into small acids, or mineralized to H2O, CO2. This work provides an alternative method for the design of efficient activation of PMS activation catalysts under solar light to eliminate residual pharmaceuticals in actual water bodies.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The [Table] data used to support the findings of this study are included within the supplementary information file.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [No. 22006136].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.