785
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

An ensemble model for landslide susceptibility mapping in a forested area

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1680-1705 | Received 25 Sep 2018, Accepted 14 Feb 2019, Published online: 11 Jun 2019
 

Abstract

This article proposes a new methodological approach using a combination of expert knowledge-based (analytic hierarchy process, AHP), bivariate (statistical index, SI) and multivariate (linear discriminant analysis, LDA) models for landslide susceptibility mapping (LSM) in Mazandran Province, Iran. Tolerance and variance inflation factor indicators were used for assessing multi-collinearity among parameters, and three (i.e. profile curvature, soil type and topography wetness index) of 18 factors were eliminated because of multi-collinearity issues. Fifteen geo-environmental conditioning factors including elevation, slope degree, slope aspect, plan curvature, slope length, convergence index, stream power index, distance from river, drainage density, distance from road, distance from fault, lithology, rainfall, land use/landcover and normalized difference vegetation index and 321 landslide locations (testing data set, 70% of total landslides) were used for modeling. The importance of factors showed that distance to road (AHP = 0.201, LDA = 0.301) was the most important factor in landslide occurrence. The validation results using validation data set (138 landslide locations, 30% of total landslides) and area under the receiver operating characteristic curve (AUROC) showed that the ensemble models AHP-LDR (83%), AHP-SI (95%) and SI-LDR (83%) had higher prediction accuracies than the individual AHP (82%), SI (82%) and LDA (79%) models and combination of AHP and SI models along with ALOS-PALSAR remote sensing data and geographic information system (GIS) technique provide powerful tool in LSM in the study area. The results of proposed novel methodological framework can be used by decision-makers and forest engineers for forest management spatially forest roads conservation that have key importance in sustainable development in local and regional scales.

Additional information

Funding

This research is supported by the Centre for Advanced Modelling and Geospatial Information Systems, University of Technology Sydney (UTS) under grant number [321740.2232335 and 321740.2232357].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.