1,402
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network

ORCID Icon & ORCID Icon
Pages 657-677 | Received 16 Sep 2019, Accepted 16 Feb 2020, Published online: 04 Mar 2020
 

Abstract

Research to improve the accuracy of very high-resolution satellite image classification algorithms is still one of the hot topics in the field of remote sensing. Successful results of deep learning methods in areas such as image classification and object detection have led to the application of these methods to remote sensing problems. Recently, Convolutional Neural Networks (CNNs) are among the most common deep learning methods used in image classification, however, the use of CNN’s in satellite image classification is relatively new. Due to the high computational complexity of 3D CNNs, which aim to extract both spatial and spectral information, 2D CNNs focussing on the extraction of spatial information are often preferred. High-resolution satellite images, however, contain crucial spectral information as well as spatial information. In this study, a 3D-2D CNN model using both spectral and spatial information was applied to extract more accurate land cover information from very high-resolution satellite images. The model was applied on a Worldview-2 satellite image including agricultural product areas such as tea, hazelnut groves and land use classes such as buildings and roads. The results of the CNN based model were also compared against those of the Support Vector Machine (SVM) and Random Forest (RF) algorithms. The post-classification accuracies were obtained using 800 control points generated by a web interface created for crowdsourcing purposes. The classification accuracy was 95.6% for the 3D-2D CNN model, 89.2% for the RF and 86.4% for the SVM.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.