1,270
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Decision tree based ensemble machine learning approaches for landslide susceptibility mapping

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4594-4627 | Received 07 Oct 2020, Accepted 24 Jan 2021, Published online: 19 Mar 2021
 

Abstract

The concept of leveraging the predictive capacity of predisposing factors for landslide susceptibility (LS) modeling has been continuously improved in recent work focusing on computational and machine learning algorithms. This paper explores the predictive capacity of different approaches to LS modelling using artificial intelligence. The key objective of this study is to estimate a LS map for the Taleghan-Alamut basin of Iran using Credal Decision Tree (CDT)-based (i.e. CDT-Bagging, CDT-Multiboost and CDT-SubSpace) hybrid machine learning approaches, which are state-of-the-art soft computing approaches that are hardly ever utilized in the assessment of LS. In this study, we used eighteen landslide predisposing factors (LPFs) that we considered to be the most important local morphological and geo-environmental factors influencing the occurrence of landslides. We calculated the significance of each of the LPFs in the landslide susceptibility assessment using the Random Forest Method. We also employed the Receiver Operating Characteristic curve, precision, performance, map robustness measurement and selection of the best-fitting models. The results shows that, compared to the other models, the CDT-Multiboost is the excellent model in this perspective with an average area under curve (AUC) of 0.993 based on a 4-fold cross-validation. We, therefore, consider the CDT-Multiboost models to be an effective method for improving spatial prediction of LS where landslide scarps or bodies are not clearly identified during the preparation of landslide inventory maps. Therefore, it will be helpful for preparing future landslide inventory maps and mitigate landslide damages.

Disclosure statement

The authors declare no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.