228
Views
2
CrossRef citations to date
0
Altmetric
Articles

Quick analysis of composition of semi-aromatic copolyamide via 13C NMR study

, , , , &
Pages 40-53 | Received 16 Jul 2018, Accepted 17 Aug 2018, Published online: 27 Sep 2018
 

Abstract

Standard high resolution 13C NMR spectra of PA10T, PA6T, PA106, and PA66 were obtained by a nonacidic solvent mixture of HFIP and CDCl3. Several chemical shifts were found extremely sensitive to the polyamide type. According to the standard spectra, semi-aromatic copolyamides comprising PA10T, PA6T, PA106, and PA66 units could be distinguished. The ratio of each polyamide component in the copolyamide was determined through the integration of the methylene carbon peak associated with the amine group. 13C NMR analysis results were consistent with the theoretical values and copolyamide hydrolysis test results, making 13C NMR analysis quite reliable on the quick composition analysis of semi-aromatic copolyamides. Based on this technique, several commercial semi-aromatic copolyamides were further examined and their compositions were easily determined.

Additional information

Funding

This work was supported by the Pearl River Nova Program of Guangzhou under Grant 201610010013; Industry-University-Research Institute Collaborative Innovation Major Project of Guangzhou under Grant 2016201604030023.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.