252
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of interfragmentary movement in fracture fixation constructs using a combination of finite element modeling and rigid body assumptions

ORCID Icon, &
Pages 1752-1760 | Received 27 Nov 2020, Accepted 17 Apr 2021, Published online: 21 Jun 2021
 

Abstract

The amount of interfragmentary movement has been identified as a crucial factor for successful fracture healing. The aim of our study was to combine finite element analysis with a rigid body assumption to efficiently predict interfragmentary movement in fixed tibial fractures. The interfragmentary movement in a transverse tibial shaft fracture (AO/OTA type 42-A3) fixed with a locked plating construct was simulated using finite element analysis. In order to assess the contribution of the components on the resulting interfragmentary movement, the tibia, screws and embedding was either simulated deformable or as rigid body. The rigid and the deformable model accurately predicted the interfragmentary movement (R2 = 0.99). The axial movement ranged between 0.1 mm and 1.3 mm and shear movements were between 0.2 mm and 0.5 mm. Differences between the two models were smaller than 73 μm (axial) and 46 μm (shear). The rigid body assumption reduced computation time and memory usage by up to 61% and 97%, respectively.

Declaration of interests

The authors declare that there is no conflict of interest.

Additional information

Funding

This study was financially supported by Paracelsus Medical University program PMU-FFF by the number E-17/25/127-AUG.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.