343
Views
1
CrossRef citations to date
0
Altmetric
Articles

Automated detection of muscle fatigue conditions from cyclostationary based geometric features of surface electromyography signals

, &
Pages 320-332 | Received 28 Dec 2020, Accepted 09 Jul 2021, Published online: 22 Jul 2021
 

Abstract

In this study, an attempt has been made to develop an automated muscle fatigue detection system using cyclostationary based geometric features of surface electromyography (sEMG) signals. For this purpose, signals are acquired from fifty-eight healthy volunteers under dynamic muscle fatiguing contractions. The sEMG signals are preprocessed and the epochs of signals under nonfatigue and fatigue conditions are considered for the analysis. A computationally effective Fast Fourier transform based accumulation algorithm is adapted to compute the spectral correlation density coefficients. The boundary of spectral density coefficients in the complex plane is obtained using alpha shape method. The geometric features, namely, perimeter, area, circularity, bending energy, eccentricity and inertia are extracted from the shape and the machine learning models based on multilayer perceptron (MLP) and extreme learning machine (ELM) are developed using these biomarkers. The results show that the cyclostationarity increases in fatigue condition. All the extracted features are found to have significant difference in the two conditions. It is found that the ELM model based on prominent features classifies the sEMG signals with a maximum accuracy of 94.09% and F-score of 93.75%. Therefore, the proposed approach appears to be useful for analysing the fatiguing contractions in neuromuscular conditions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.