111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cardiac arrest prediction in smokers using enhanced Artificial Bee Colony algorithm with stacked autoencoder model

&
Pages 1220-1235 | Received 06 Aug 2022, Accepted 20 Feb 2023, Published online: 17 Apr 2023
 

Abstract

In the recent times, the cardiac arrest is a severe heart disease, which results in millions of annual casualties. In this article, the heart rate variability (HRV) parameters are used for predicting cardiac arrest in smokers based on the deep learning techniques. First, the input data is collected from MITU Skillogies dataset, which consists of 1562 smoker and non-smoker instances with 19 HRV input attributes/features. After data collection, the enhanced Artificial Bee Colony algorithm (EABC) is developed for feature selection. The EABC algorithm includes two new multi-objective functions for decreasing the number of attributes in the MITU Skillogies dataset. This mechanism superiorly reduces the burden of computational complexity and improves classification accuracy. Further, the selected attributes are given to the stacked autoencoder classifier for non-cardiac arrest and cardiac arrest classification in smokers for early diagnosis. The extensive experiment showed that the EABC with stacked autoencoder model obtained 96.26% of classification accuracy, which is better related to the traditional machine learning models.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.