82
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

An ensemble-based serial cascaded attention network and improved variational auto encoder for breast cancer prognosis prediction using data

&
Pages 98-115 | Received 29 Aug 2023, Accepted 02 Nov 2023, Published online: 24 Nov 2023
 

Abstract

Breast cancer is one of the most common types of cancer in women and it produces a huge amount of death rate in the world. Early recognition is lessening its impact. The early recognition of breast cancer could convince patients to receive surgical therapy, which will significantly improve the chance of restoration. This information is used by the machine learning technique to find links between them and appraise our forecasts of fresh occurrences. Later recognition of breast cancer can lead to death. An accurate prescient framework for breast cancer prediction is urgently needed in the current era. In order to accomplish the objective, an adaptive ensemble model is proposed for breast cancer prognosis prediction using data. At the initial stage, the raw data are fetched from benchmark datasets. It is then followed by data cleaning and preprocessing. Subsequently, the pre-processed data is fed into the Improved Variational Autoencoder (IVAE), where the deep features are extracted. Finally, the resultant features are given as input to the Ensemble-based Serial Cascaded Attention Network (ESCANet), which is built with Deep Temporal Convolution Network (DTCN), Bi-directional Long Short-Term Memory (BiLSTM), and Recurrent Neural Network (RNN). The effectiveness of the model is validated and compared with conventional methodologies. Therefore, the results elucidate that the proposed methodology achieves extensive results; thus, it increases the system’s efficiency.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.