323
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The anti-inflammatory effect of ent-kaur-15-en-17-al-18-oic acid on lipopolysaccharide-stimulated RAW264.7 cells associated with NF-κB and P38/MAPK pathways

, , , , , , & show all
Pages 570-583 | Received 19 Jul 2019, Accepted 18 Jun 2020, Published online: 30 Jun 2020
 

Abstract

Ent-kaur-15-en-17-al-18-oic acid (LL-3) was demonstrated that it can inhibit LPS-induced nitric oxide (NO) production and macrophage migration, maintain homeostasis of oxidative stress, including increased mitochondrial membrane potential (MMP), decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and maintenance of superoxide dismutase (SOD) and glutathione (GSH) activities and inhibit oxidative stress-induced P38 and nuclear factor κB (NF-κB) pathways to decrease inducible nitric oxide synthase (iNOS), cyclooxygense-2 (COX-2), and tumour necrosis factor (TNF)-α mRNA expressions without marked cytotoxicity. These findings revealed that LL-3 could serve as a candidate lead compound for further studying anti-inflammatory therapies.

Graphical Abstract

Disclosure statement

The authors declare that there are no potential conflicts of interest.

Additional information

Funding

This work was financially supported by the Natural Science Foundation of Shandong Province [grant number ZR2019MH001]; the Fundamental Research Funds for the Central Universities [grant number No.2019ZRJC004].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 426.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.