623
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Contribution to pavement friction modelling: an introduction of the wetting effect

, , , &
Pages 965-976 | Received 07 Feb 2017, Accepted 09 Aug 2017, Published online: 06 Sep 2017
 

ABSTRACT

This paper presents a friction model describing the tyre rubber/road interaction that takes into account the viscoelasticity of the tyre rubber, the texture of the road surface and a water layer between the tyre/road interface by introducing explicitly a computation of the water layer effect in the calculation process of the hysteretic friction. The geometry of the wetted portion of the interface model is simplified by transforming it into an equivalent hydrodynamic bearing. Utilising the Reynolds equation, the bearing load capacity is calculated and the resulting forces are subtracted from the contact load when calculating the forces of the hysteretic friction. The mechanical behaviour of the rubber is represented in the model by Kelvin–Voigt model. The frictional forces due to hysteresis are calculated at any given operating conditions (load, slip speed, etc.) from the contact geometry of rough surfaces caused by the viscoelastic behaviour of rubber. To validate the model, a set of surfaces including real pavements and artificially textured slabs were selected covering a wide range of microtexture and macrotexture combinations and the computed and measured friction compared. To describe the contact geometry of rough surfaces using macrotexture and to measure actual friction, the Circular Track Meter and the Dynamic Friction Tester devices were used, respectively. The friction coefficients computed using the model were compared to the measured friction coefficients. The obtained results are presented in the paper and proved to provide high correlation between the measured and modelled friction. The model is capable to predict wet friction at low as well as high speeds on wet surfaces, thus proving to be capable to take adequately the wetting effect on the variation of friction with increasing speed. Recommendations are provided to improve the model and extend it to a tyre friction model.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.