286
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Developing an optimized faulting prediction model in Jointed Plain Concrete Pavement using artificial neural networks and random forest methods

, ORCID Icon &
Article: 2057975 | Received 17 May 2021, Accepted 21 Mar 2022, Published online: 06 Apr 2022
 

ABSTRACT

Predicting faulting failure is useful in the optimal concrete pavement design. In this study, artificial neural networks and the random forest method have been used to predict the amount of this failure. The general prediction model was created by inserting 32 available input variables into artificial neural networks. An integer two objectives optimisation problem was designed to select features that significantly affect the faulting. After applying this method, 19 important variables were identified and used to develop two simplified models based on artificial neural networks and the random forest method. It is shown that the simplified model developed by artificial neural networks is the best model to accurately predict the faulting considering the number of input variables. The cumulative number of days when the precipitation is more than 12.7 mm, the elastic modulus of concrete slab, the number of days passed since the pavement was built, base thickness, the cumulative ESALs in the traffic lane, and the annual average number of days when the temperature is more than 32°C were identified as the most important parameters in predicting faulting using the random forest method. A Sensitivity analysis has been then performed on these variables and optimal values were determined.

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author, upon reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.