188
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Biobased Poly-phosphonate Additives from Methyl LinoleatesFootnote

, &
Pages 428-442 | Received 08 Aug 2018, Accepted 13 Jan 2019, Published online: 25 Mar 2019
 

Abstract

Poly-dialkyl phosphonates were synthesized by reacting methyl linoleate with dimethyl, diethyl, and di-n-butyl phosphites in the presence of free radical initiator and positively identified and characterized using gas chromatography–mass spectrometry (GC-MS), nuclear magnetic resonance (NMR; 1H, 13C, 31P), and Fourier transform infrared (FTIR). Neat poly-dialkyl phosphonates and their blends in high-oleic sunflower oil (HOSuO) and polyalphaolefin (PAO-6) base oils were investigated for their physical, chemical, and tribological properties. At room temperature, the poly-dialkyl phosphonates displayed much better solubility in HOSuO than in PAO-6. Solubility in the base oils increased in the order dimethyl < diethyl < di-n-butyl. Relative to methyl linoleate, the neat poly-dialkyl phosphonates displayed higher density, higher kinematic viscosity, higher oxidation stability, and better cold flow (lower pour point and cloud point) properties. As an additive (0–10% w/w) in HOSuO, increasing concentration of poly-di-n-butyl phosphonate resulted in increasing onset and peak oxidation temperatures and decreasing cloud point. Poly-di-n-butyl phosphonate blends in HOSuO also showed lower four-ball antiwear (AW) coefficient of friction (COF) and wear scar diameter (WSD) than corresponding blends with zinc dialkyl dithiophosphate (ZDDP). As an additive (0–10% w/w) in PAO-6 base oil, poly-di-n-butyl phosphonate displayed lower four-ball antiwear COF and comparable WSD relative to similar blends of ZDDP in PAO-6. The results indicate that poly-dialkyl phosphonates are promising biobased AW additives with comparable or better performance than current petroleum-based commercial AW additives such as ZDDP.

Acknowledgements

The authors are grateful to the Elco Corporation for providing free sample of ZDDP and to Ineos Oligomers for providing free samples of PAO-6. The authors thank Linda Manthey and Linda Cao for their technical help.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.