Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 77, 2020 - Issue 2
406
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A proper orthogonal decomposition analysis method for transient nonlinear heat conduction problems. Part 1: Basic algorithm

, &
Pages 87-115 | Received 08 Jul 2019, Accepted 04 Nov 2019, Published online: 26 Nov 2019
 

Abstract

The present work conducts a systematic and in-depth algorithm investigation for transient nonlinear heat conduction problems solved by using the proper orthogonal decomposition (POD) method. Part 1 of this two-part articles presents the process and characteristics of basic algorithms, including POD explicit and implicit time-marching methods. The accuracy and efficiency are verified by several numerical examples with various boundary conditions and element types. The results show that the POD-based reduced order model (ROM) can provide high quality temperature prediction of the transient nonlinear heat conduction problems when using implicit method. However, the computational time of implicit method is much longer than that of explicit one. The acceleration effect of POD-based ROM on the calculation of the transient nonlinear heat conduction problems is one order of magnitude lower than that of the corresponding transient linear heat conduction problems. The improvement of computational efficiency is not pronounced. Further studies of the more efficient advanced algorithms to deal with POD-based ROM for transient nonlinear heat conduction problems will be presented in Part 2. Additionally, an approximate POD-based ROM for transient nonlinear heat conduction problem is proposed, which can be constructed quickly by using POD modes obtained from the corresponding transient linear heat conduction system. It is confirmed to be feasible for allowing nonlinear behavior to be modeled at an acceptable level of accuracy. It has significant application potential of solving practical engineering problems.

Additional information

Funding

The authors gratefully acknowledge the financial support for this research provided by the National Natural Science Foundation of China (Grant Nos. 51576026, 11672061) and the Fundamental Research Funds for the Central Universities (Grant Nos. DUT17LK58, DUT18GF105).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 486.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.