418
Views
29
CrossRef citations to date
0
Altmetric
Articles

Neural-fuzzy optimization of thick composites curing process

, , , , &
Pages 262-273 | Received 24 Dec 2017, Accepted 03 Jul 2018, Published online: 05 Sep 2018
 

ABSTRACT

This article addresses the optimization of curing process for thick composite laminates. The proposed methodology aims at the evaluation of the thermal cycle promoting a desired evolution of the degree of cure inside the material. At the same time, temperature overshooting as well as excessive temperature and cure degree gradient through the thickness of the material are prevented. The developed approach is based on the integrated application of artificial neural networks and a fuzzy logic controller. The neural networks promptly predict the behavior of composite material during curing process, while the fuzzy logic controller continuously and opportunely adjusts the proper variations on the imposed thermal cycle. The results highlighted the efficiency of the method in comparison with the cure profiles dictated by the material suppliers. For thick laminates, a reduction of 35% of cure time and improvements of approximately 10% of temperature overshooting was obtained compared to conventional curing cycles. The method was validated by experimental tests.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.