3,563
Views
55
CrossRef citations to date
0
Altmetric
Articles

Effect of tool rotation in near-dry EDM process on machining characteristics of HSS

ORCID Icon, & ORCID Icon
Pages 779-790 | Received 21 Oct 2018, Accepted 15 Mar 2019, Published online: 24 Apr 2019
 

ABSTRACT

Rotary tool near-dry electrical discharge machining (RT-ND-EDM) is a process variant of EDM, which utilizes two phase dielectric medium instead of a conventional liquid or gaseous dielectric medium. The present work, RT-ND-EDM was investigated while machining of high speed steel (AISI M2 grade) using glycerin-air dielectric medium. The effect of various input process parameters was investigated on material removal rate (MRR), surface roughness (SR), and hole overcut (HOC). The input parameters considered were tool rotation speed, current, pulse on time, liquid flow rate, and gas pressure. Experiments were designed and conducted using response surface methodology. Regression models were also developed. The results revealed that the tool rotation speed has a significant effect on MRR, SR, and HOC. FE-SEM micrographs showed that the machined surfaces obtained by RT-ND-EDM have relatively lower micro-cracks, debris accumulation and craters. Also, deep through holes were successfully drilled in 24 mm plate using RT-ND-EDM process.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.