447
Views
1
CrossRef citations to date
0
Altmetric
Articles

Quantitative decision-making in randomized Phase II studies with a time-to-event endpoint

ORCID Icon, , &
Pages 189-202 | Received 22 Oct 2016, Accepted 11 Jun 2018, Published online: 03 Jul 2018
 

ABSTRACT

One of the most critical decision points in clinical development is Go/No-Go decision-making after a proof-of-concept study. Traditional decision-making relies on a formal hypothesis testing with control of type I and type II error rates, which is limited by assessing the strength of efficacy evidence in a small isolated trial. In this article, we propose a quantitative Bayesian/frequentist decision framework for Go/No-Go criteria and sample size evaluation in Phase II randomized studies with a time-to-event endpoint. By taking the uncertainty of treatment effect into consideration, we propose an integrated quantitative approach for a program when both the Phase II and Phase III trials share a common endpoint while allowing a discount of the observed Phase II data. Our results confirm the argument that an increase in the sample size of a Phase II trial will result in greater increase in the probability of success of a Phase III trial than increasing the Phase III trial sample size by equal amount. We illustrate the steps in quantitative decision-making with a real example of a randomized Phase II study in metastatic pancreatic cancer.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 717.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.