436
Views
0
CrossRef citations to date
0
Altmetric
Articles

Electrical and dielectric properties of barium titanate – polydimethylsiloxane nanocomposite with 0-3 connectivity modified with carbon nanotube (CNT)

, , , , , & show all
Pages 46-57 | Received 31 Oct 2017, Accepted 22 Jun 2018, Published online: 07 May 2019
 

Abstract

This study explored the preparation and electrical properties of 0–3 barium titanate/polydimethylsiloxane nanocomposites by dispersing barium titanate nanoparticles (BaTiO3; BT) into the polydimethylsiloxane (PDMS) matrix phase. The effect of barium titanate nanoparticles on electrical properties has been investigated systematically, and the relative permittivity of nanocomposites was found to increase significantly with increasing barium titanate content. Different theoretical models were used to predict the dielectric constant of these composites and compare their experimental value with the theoretical value in order to find an appropriate equation. The result indicated that the dielectric properties of composites are influenced not only by relative permittivity of the components but also dependence on interactions between ceramics and polymers. Furthermore, the preparation and dielectric properties of BT/PDMS nanocomposites modified with carbon nanotube (CNT) were also studied. The dielectric results demonstrate that adding CNT can enhance the relative permittivity of the BT/PDMS composite via improvement of dispersion and distribution of the BT nanoparticles in the PDMS matrix phase. Moreover, the electrical outputs from the BT/PDMS/CNT nanocomposites generator were measured under periodic knocking. The nanocomposites innovatively expand the feasibility of self-powered energy systems for smart sensor and energy harvesting applications.

Additional information

Funding

This research was supported by King Mongkut’s Institute of Technology Ladkrabang under grant number KREF145908 and 2561-01-05-77.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.