Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phosphorescence and Tarnish Resistance Properties of Copper with Strontium Aluminate Addition

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 43-51 | Received 15 Jan 2023, Accepted 09 Jun 2023, Published online: 27 Oct 2023
 

Abstract

The purpose of this research is to examine the effect of strontium aluminate (SrAl2O4) in copper samples on phosphorescence and tarnish resistance properties. The samples were fabricated by powder metallurgy using the compression moulding technique and then sintered in argon atmosphere. Phosphorescence, hardness, microstructure and tarnish resistance were studied. In the process of the compression moulding, the samples contain 100, 90, 80 and 70 percent of copper powder, by weight, with the addition of 0, 10, 20 and 30 percent of strontium aluminate, by weight, respectively. Polyvinyl alcohol (PVA) was used as a binder and mixed with copper and strontium aluminate powder to produce the green specimens using a hydraulic machine. Then, the green samples were sintered at 900 °C for one hour. After sintering, PVA was eliminated and the samples became denser. It was found that the hardness of the sample without strontium aluminate (30.5 HV) is higher than that of the sample with 10% of strontium aluminate addition (12.84 HV). Furthermore, copper samples containing strontium aluminate were fluorescent under ultraviolet at 517 nm. The sample with the largest amount of strontium aluminate (70Cu-30SrAl2O4) has higher phosphorescence than 90Cu-10SrAl2O4. In sulphur atmosphere, the tarnish resistance was found to be improved when strontium aluminate was added into copper. The colour difference (DE*) of 100Cu, which has no strontium aluminate, was 6.42 and higher than that of 90Cu-10SrAl2O4 (DE*= 3.5), 80Cu-20SrAl2O4 (DE*= 1.37), and 70Cu-30SrAl2O4 (DE*= 0.49), when testing in sulphur atmosphere for 30 min. 70Cu-30SrAl2O4, containing the highest amount of strontium aluminate, has the least colour changing on its surface resulting in the resistance in tarnishing.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Faculty of Science, Srinakharinwirot University with grant number 210/2565 and Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.