Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
36
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Sintering Temperature Effect on Phase Formation, Microstructure and Electrical Properties of Modified KNLNTS Solid Solution Prepared via the Solid-State Combustion Technique

, , , &
Pages 210-223 | Received 11 Mar 2023, Accepted 24 Apr 2023, Published online: 27 Oct 2023
 

Abstract

In this study, the effect of sintering temperature (1000–1100 °C for 2 h) on phase formation, phase transition, microstructure and electrical properties of lead-free piezoelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.10Sb0.06)O3 (KNLNTS) solid solution with 0.3 wt%Bi2O3 + 0.4 wt%Fe2O3 + 0.2 wt%CuO additive (abbreviate as modified KNLNTS) was investigated. Modified KNLNTS ceramics were synthesized by the solid-state combustion technique using glycine as fuel. The modified KNLNTS powders were prepared using the calcination condition of 650 °C for 2 h. The XRD pattern of all sintered ceramics exhibited a pure perovskite phase. Using Rietveld refinement to analyze the phase formation showed that the modified KNLNTS ceramics had co-existing phases of orthorhombic and tetragonal in all sintered ceramics and the orthorhombic phase increased when the sintering temperature increased. The average grain size, TO-T, Tc, Pr and Ec increased with increasing sintering temperature. At the sintering temperature of 1025 °C, the modified KNLNTS ceramic showed the best electrical properties (Cε ≈ 6745, Smax ≈0.274% and d*33 ≈ 548 pm/V). The good electrical properties of the modified KNLNTS ceramics makes them good candidates for lead-free applications to replace Pb-based ceramics.

Acknowledgments

The authors wish to thank the Department of Physics, Faculty of Science, Naresuan University. Thanks, are also given to Asst. Prof. Dr. Kyle V. Lopin for his help in editing the manuscript.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work supported by The National Science, Research and Innovation Fund (NSRF) through Naresuan University [R2565B059].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.