164
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Machine learning for skin permeability prediction: random forest and XG boost regression

&
Pages 57-65 | Received 20 Jun 2023, Accepted 09 Nov 2023, Published online: 23 Nov 2023
 

Abstract

Background: Machine learning algorithms that can quickly and easily estimate skin permeability (Kp) are increasingly being used in drug delivery research. The linear free energy relationship (LFER) developed by Abraham is a practical technique for predicting Kp. The permeability coefficients and Abraham solute descriptor values for 175 organic compounds have been documented in the scientific literature.

Purpose: The purpose of this project was to use a publicly available dataset to make skin permeability predictions using the random forest and XBoost regression techniques.

Methods: We employed Pandas-based methods in JupyterLab to predict permeability coefficient (Kp) from solute descriptors (excess molar refraction [E], combined dipolarity/polarizability [S], overall solute hydrogen bond acidity and basicity [A and B], and the McGowan's characteristic molecular volume [V]).

Results: The random forest and XG Boost regression models established statistically significant association between the descriptors and the skin permeability coefficient.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.