418
Views
3
CrossRef citations to date
0
Altmetric
Advances in Sampling and Optimization

Projection Pursuit Based on Gaussian Mixtures and Evolutionary Algorithms

ORCID Icon &
Pages 847-860 | Received 25 Feb 2018, Accepted 19 Mar 2019, Published online: 12 Jun 2019
 

Abstract

We propose a projection pursuit (PP) algorithm based on Gaussian mixture models (GMMs). The negentropy obtained from a multivariate density estimated by GMMs is adopted as the PP index to be maximized. For a fixed dimension of the projection subspace, the GMM-based density estimation is projected onto that subspace, where an approximation of the negentropy for Gaussian mixtures is computed. Then, genetic algorithms are used to find the optimal, orthogonal projection basis by maximizing the former approximation. We show that this semiparametric approach to PP is flexible and allows highly informative structures to be detected, by projecting multivariate datasets onto a subspace, where the data can be feasibly visualized. The performance of the proposed approach is shown on both artificial and real datasets. Supplementary materials for this article are available online.

Acknowledgments

The authors are grateful to the editor, the associate editor, and two anonymous reviewers for their very helpful comments and suggestions which helped to improve the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 180.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.