233
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Design of phosphoryl containing podands with Li+/Na+ selectivity using machine learning

, &
Pages 521-539 | Received 30 Mar 2021, Accepted 09 May 2021, Published online: 09 Jun 2021
 

ABSTRACT

In this work we demonstrated, that machine learning opens a way for real design of ligands with required metal ion selectivity. We performed the ensemble QSPR modelling of the Li+/Na+ complexation selectivity and the stability constants for the Li+L and Na+L complexes of phosphoryl podands in nonaqueous solvent THF/СНCl3 (4:1 v/v). The models were built and cross-validated using MLR with the ISIDA QSPR program and SVM with the libSVM package. The program SVMsmf was implemented to fulfil an ensemble modelling using libSVM and the Substructural Molecular Fragments (SMF) descriptors. SMF were used as descriptors for the ensemble modelling, properties predictions by consensus models and design of combinatorial library of new ligands. SMF such as the P=O group, the ether and P=O groups bound through the aromatic ring contribute significantly to the Li+/Na+ selectivity. The developed models were applied for the prediction of the studied properties for a focused virtual library of 3057 phosphoryl podands generated using SMF contributions promising for selective binding of lithium. Consensus models selected hits for a synthesis by combinatorial library screening. Among the constructed selective ligands – hits, three new podands were synthesized, for which the experimentally estimated selectivity is in satisfactory agreement with that predicted.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2021.1929462.

Additional information

Funding

This work was supported by the Ministry of Science and Higher Education of Russia [grant agreement No. 075-15-2020-782].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.