549
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification of novel inhibitors targeting TIRAP interactions with BTK and PKCδ in inflammation through an in silico approach

, , , , , & show all
Pages 141-166 | Received 09 Nov 2021, Accepted 26 Jan 2022, Published online: 17 Feb 2022
 

ABSTRACT

Advanced computational tools focusing on protein–protein interaction (PPI) based drug development is a powerful platform to accelerate the therapeutic development of small lead molecules and repurposed drugs. Toll/interleukin-1 receptor (TIR) domain-containing adapter protein (TIRAP) and its interactions with other proteins in macrophages signalling are crucial components of severe or persistent inflammation. TIRAP activation through Bruton’s tyrosine kinase (BTK) and Protein Kinase C delta (PKCδ) is essential for downstream inflammatory signalling. We created homology-based structural models of BTK and PKCδ in MODELLER 9.24. TIRAP interactions with BTK and PKCδ in its non-phosphorylated and phosphorylated states were determined by multiple docking tools including HADDOCK 2.4, pyDockWEB and ClusPro 2.0. Food and Drug Administration (FDA)-approved drugs were virtually screened through Discovery Studio LibDock and Autodock Vina tools to target the common TIR domain residues of TIRAP, which interact with both BTK and PKC at the identified interfacial sites of the complexes. Four FDA-approved drugs were identified and found to have stable interactions over a range of 100 ns MD simulation timescales. These drugs block the interactions of both kinases with TIRAP in silico. Hence, these drugs have the potential to dampen downstream inflammatory signalling and inflammation-mediated disease.

Acknowledgements

The authors gratefully acknowledge the Indian Institute of Technology Indore (IITI) for providing facilities and other support. Senior Research Fellowship (SRF) from Council of Scientific and Industrial Research (CSIR) to SR.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Supplementary material

Supplemental data for this article can be accessed at: https://doi.org/10.1080/1062936X.2022.2035817

Additional information

Funding

This work was supported by the Cumulative Professional DevelopmentAllowance (CPDA) and Research Development Fund (RDF) from the Indian Institute of TechnologyIndore (IITI) to MSB.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.